Instability of a stalled accretion shock: evidence for the advective-acoustic cycle

نویسندگان

  • T. Foglizzo
  • P. Galletti
چکیده

We analyze the linear stability of a stalled accretion shock in a perfect gas with a parametrized cooling function L ∝ ρP . The instability is dominated by the l = 1 mode if the shock radius exceeds 2−3 times the accretor radius, depending on the parameters of the cooling function. The growth rate and oscillation period are comparable to those observed in the numerical simulations of Blondin & Mezzacappa (2006). The instability mechanism is analyzed by separately measuring the efficiencies of the purely acoustic cycle and the advective-acoustic cycle. These efficiencies are estimated directly from the eigenspectrum, and also through a WKB analysis in the high frequency limit. Both methods prove that the advective-acoustic cycle is unstable, and that the purely acoustic cycle is stable. Extrapolating these results to low frequency leads us to interpret the dominant mode as an advective-acoustic instability, different from the purely acoustic interpretation of Blondin & Mezzacappa (2006). A simplified characterization of the instability is proposed, based on an advectiveacoustic cycle between the shock and the radius r∇ where the velocity gradients of the stationary flow are strongest. The importance of the coupling region in this mechanism calls for a better understanding of the conditions for an efficient advective-acoustic coupling in a decelerated, nonadiabatic flow, in order to extend these results to core-collapse supernovae. Subject headings: accretion – hydrodynamics – instabilities – shock waves – supernovae

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Toy Model of the Advective-acoustic Instability I. Perturbative Approach

Some general properties of the advective-acoustic instability are described and understood using a toy model which is simple enough to allow for analytical estimates of the eigenfrequencies. The essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic region of deceleration. For the sake of analytical simplicity, the 2D unperturbed flow is parallel a...

متن کامل

Neutrino-driven convection versus advection in core collapse supernovae

A toy model is analyzed in order to evaluate the linear stability of the gain region immediately behind a stalled accretion shock, after core bounce. This model demonstrates that a negative entropy gradient is not sufficient to warrant linear instability. The stability criterion is governed by the ratio χ of the advection time through the gain region divided by the local timescale of buoyancy. ...

متن کامل

A fresh look at the unstable simulations of Bondi - Hoyle - Lyttleton accretion

The instability of Bondi-Hoyle-Lyttleton accretion, observed in numerical simulations, is analyzed through known physical mechanisms and possible numerical artefacts. The mechanisms of the longitudinal and transverse instabilities, established within the accretion line model, are clarified. They cannot account for the instability of BHL accretion at moderate Mach number when the pressure forces...

متن کامل

Entropic-acoustic instability in shocked accretion flows

A new instability mechanism is described in accretion flows where the gas is accelerated from a stationary shock to a sonic surface. The instability is based on a cycle of acoustic and entropic waves in this subsonic region of the flow. When advected adiabatically inward, entropy perturbations trigger acoustic waves propagating outward. If a shock is present at the outer boundary, acoustic wave...

متن کامل

6 Neutrino - driven convection versus advection in core collapse supernovae

A toy model is analyzed in order to evaluate the linear stability of the gain region immediately behind a stalled accretion shock, after core bounce. This model demonstrates that a negative entropy gradient is not sufficient to warrant linear instability. The stability criterion is governed by the ratio χ of the ad-vection time through the gain region divided by the local timescale of buoyancy....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006